
Introduction

The concept of rock mass with sheet crack systemati-

cally adopted by SUN Guang-zhong is that the rock mass

generated by interlaminar disturbed cutting or cleavage is

provided with the characteristics of sheet crack when the

length-thick ratio of rock stratum is greater than 15~18 [1].

This kind of rock mass is cut by a group of penetrating sur-

faces and has cracking sheet structure with the shape of

clintheriform or cataclastic clintheriform. The deformation

and damage of rock mass with sheet crack is mainly con-

trolled by weak structural surfaces and also sometimes by

penetrating hard structural surfaces. The failure mechanism

and mode are the buckling and bending of cracking sheet

structure. Buckling failure means that the tabular rock stra-

tum downward slips along the lower weak structural sur-

faces and then produces arches and is cut off, causing dam-

age at the foot of the slope. For example, the slope height

of Bawang Mountain with the composition of limestone is

940 m, and the dip angle of rock is about 40º; the thickness

of damaged rock stratum is 15 m, underneath which is a

thin clay interlayer. The upper limestone rock stratum pro-

duces creep along the lower clay rock stratum and the part

near the riverbed at slope foot is bent under the action of

gravity, for a long time causing buckling failure. Bending

failure is more common in the roof and baseplate damage

of an underground cavern; for example, the roof can break

away from the upper strata, growing creaks to produce the

rock beam. This kind of rock beam can present vertical

bending because of its own weight, and when the creaks are

produced in the rock beam, the neutral axis will move

upward with the gradual outspread of creaks until it runs

through the whole beam and then a part of the rock mass

loosens and falls [2].
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The application of solid mechanics theory in rock

engineering is promoted by the presentation of sheet crack

concept and geological model, the basic computing meth-

ods of which consist of the static method and energy

method. The special part of rock mass with sheet crack is

the problem of structural stability, the failure mechanism

of which is different from the structural instability caused

by material breakage. Not all damage to tabular structures

is structural instability; for example, it is not appropriate

that the bending failure of a tabular structure is called

structural instability, the model for which is far from the

common continuum model. 

At present, many scholars have studied the stability of

rock mass with sheet slope crack, making lots of valuable

results [3-6]. But the rock mass with sheet slope crack was

abstracted into column beam in most studies with

mechanical analysis of column beam, and the stability

evaluation of which is progressed mainly by the stability

theory of struts. In fact, the stability of plates is far away

from the stability problem of struts, and the important dif-

ference between the buckling of elastic plates and the

instability of columns is that the buckling of columns

marks the loss of bearing capacity, while the plates can

continue to resist the increased pressure after reaching the

critical load, and the load can substantially exceed the crit-

ical load of plates, so it is necessary for the stability of

rock mass with sheet slope crack to be studied by plate-

shell theory. 

The buckling and post-buckling characteristics of rock

mass with sheet slope crack are solved by numerical

method based on plate-shell theory in this paper, and then

the validation is progressed using the on-site testing data

of hazardous rock mass in Zhenziyan.

Buckling Analytical Solution of Orthogonal

Various Heterosexual Plates

Research with regard to the stability of thin plates has

been carried out at home and abroad, whether the small-

deflection or large-deflection buckling are based on the

thin pates neglecting transverse shear deformation. In fact,

it is necessary to consider the effect of transverse shearing

deformation because the increase of wall thickness of plate

and shell structures in practical engineering often goes

beyond the application of a thin wall. The deformation fea-

ture of plate and shell buckling is bending deformation,

and the internal force characteristic is consistent with that

of large-deflection bending, so the buckling theory widely

used in calculation is based on von Karman’s large-deflec-

tion equations, and the top priority problem to be solved is

the critical load of buckling determined by the equilibrium

state of buckling. In the small-deflection buckling theory

of plate and shell, the stress state before buckling is usual-

ly assumed for the non-moment state, making the balance

equation of plates linearized [7-11].

On the basis of geometric equations, physical equations

and equilibrium equations of medium plates, the displace-

ment governing differential equations of medium plates

concerning three independent variables, i.e. one middle sur-

face displacement and two middle surface intersection

angles are established, so the displacement governing dif-

ferential equations of small-deflection buckling of medium

plates can be obtained accordingly. Then, the displacement

governing differential equations of simply supported rec-

tangular plates are solved by the method of double trigono-

metric series, and the critical load expression of small-

deflection buckling of simply supported rectangular medi-

um plates is obtained by MATLAB. The above-mentioned

theory applied in the calculation for force-bearing state of

rock mass with sheet slope crack can provide reference for

the calculation of slope stability.

Fundamental Relations 

of Medium Plates [11-13]

The displacement component at any point P (x, y) in the

middle surface of medium plates is w (x, y), and the dis-

placement components at any point P1 (x, y, z) in the non-

middle surface of medium plates are u1 (x, y, z), v1 (x, y, z),
w1 (x, y, z), then the relations of the two points are: 

u1 = u + zφ,     v1 = v + zψ,    w1 = w (1)

...where the middle surface displacements u = 0, v = 0, φ,
and ψ are independent angles at any point P (x, y) in the

middle surface. Thus, the strains at P1 (x, y, z) can be

expressed as:

(2)

...where the membrane strains in the middle surface of

medium plates are: 

(3)

The bending strains in the middle surface of medium

plates are:

(4)

The transverse shear strains in the middle surface of

medium plates are:

(5)

The transverse shears of medium plates are:

(6)

And the internal forces of medium plates are:
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(7)

...where the bending stiffness D = Eh3/[12(1–μ2)], kT is the

conversion factor of the transverse shear strains ε13, ε23 and

average values of transverse shear strains ε̄13, ε̄23 (the value

often takes 1 or 5/6), and the equilibrium equations of medi-

um plates are:

(8a)

(8b)

(8c)

...where the nonlinear terms in Eq. (8a) are produced

because of the large-deflection bending, and the effect of

nonlinearity is not considered in the other equations. When

the effect of nonlinear terms is neglected, the above equa-

tions can degenerate into the fundamental equations of

small-deflection bending.

Displacement Governing Differential Equations 

of the Buckling of Medium Plates 

The membrane forces in small-deflection buckling the-

ory of shells are directly produced by the action of in-plane

load, which can be regarded as known quantities. When the

medium plates are not subjected to normal load (q=0), the

fundamental equations of small-deflection buckling of

medium plates expressed by displacement components (w,

φ, ψ) can be obtained:

The transverse shear items and 

in Eqs. (9b-9c) are substituted into Eq. (9a), the founda-

tional equation concerning one middle surface displace-

ment component (w) can be obtained. The intersection

angles φ and ψ are no longer independent variables, i.e.

, , then:

(10)

...where the Laplace operator is . Eq. (10)

is the same as Eq. (12.1) in literature [7]. When normal

force (q) is zero, the fundamental equation of the plates

buckling only subjected to membrane force is the same as

Eq. (12.1a) in literature [7] and Eq. (2.2) in literature [8].

Buckling of Simply Supported Rectangular

Medium Plates with Unidirectional Pressure

It is assumed that one simply supported rectangular

medium plate is subjected to uniform pressure p (Fig. 1).

The translation motions of plate edges occur in plane, and

the stresses in other directions are not produced by the

deformation along the direction of x axis. The membrane

forces here are T1= –p, T2=T12=0, so Eq. (10) can be rewrit-

ten as:

(11)

The functions of deflections and angles are expressed

by double trigonometric series as:

(12a)

(12b)

(12c)

The above equations all satisfy the boundary conditions

of four simply supported edges, and Wmn, Φmn, and Ψmn are

undetermined coefficients. Eqs. (12a-12c) are substituted

into Eq. (10), and the following equations can be obtained:
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Fig. 1. Force sketch of plate neutral surface.



(13b)

(13c)

The relational expressions of Φmn, Ψmn, and Wmn can be

obtained by the addition and subtraction of Eqs. (13b-13c):

(14a,b)

...where:

(15a)

(15b)

(15c)

Eq. (15) is substituted into Eq. (14a):

(16)

Two possibilities make the equation come into exis-

tence: there is a trivial solution with Wmn= 0, i.e. the plates

maintain the balance of plane state subjected to any load;

for the untrivial solution of Wmn, the parentheses item

should equal zero, that is:

The buckling load means the minimum load satisfying

Eq. (17). Based on the observation and analysis, it is con-

sidered that p monotonously increases with the growth of

parameter n, so only one half-wave can be formed in the y

direction (n=1). According to the extremum condition of

function, the formula of dp/dm=0 is adopted to work out the

minimal value of p with condition of m=a/b (the parameter

m must be a positive integer and discontinuous variable).

The static balance method and dimensionless parameter of

P*=pb2/p2D are adopted in the actual analysis, and the

Matlab software is used to obtain the changing curves of

P*= a/b.

Solving and Curves of Critical Buckling Load

The buckling characteristics of simply supported rec-

tangular medium plate are discussed, and the physical para-

meters are, respectively: G=E/[2(1+μ)], D=Eh3/[12(1–μ2)],

K=Eh/(1–μ2), E=2.06×105MPa, μ=0.3, b=1,000 mm, and

kτ=5/6, n=1. The curves (Y-axis is pb2/�2D, X-axis is a/b)

and corresponding data are given with conditions of

h=b/100, b/50, b/20, b/10, b/5, b/4.

It can be seen from Figs. 2-7 and Table 1 that the

dimensionless critical load P* decreases with the increase

of thickness h, the maximum and minimum values of

which are about 4 and 3, respectively, showing that the

buckling critical load of rectangular medium plate is less

than that of thin plate for the energy consumption of trans-

verse shear deformation. When the value of a/b is small,
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Fig. 2. Curves of h=b/100.

Fig. 3. Curves of h=b/50.
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the change of P* with length-width ratio is particularly

evident; when a/b >4, the change of P* tends to be gentle.

The critical load of rectangular medium plate is identical

to the results obtained by theory of thin plate under the

conditions of h=b/100, b/50, b/20, and now the displace-

ment governing differential equations of the buckling of

medium plates can degenerate to the corresponding dis-

placement governing equations of thin plates, demonstrat-

ing the validity and generality of the solving process in

this paper.
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Fig. 6. Curves of h=b/5.

Fig. 5. Curves of h=b/10.

Fig. 4. Curves of h=b/20.

Fig. 7. Curves of h=b/4.

Table 1. Critical loading coefficient of the buckling of simply supported rectangular medium plates (P*=pcrb2/π2D).

Thickness a/b=1 a/b=2 a/b=3 a/b=4 a/b=5

h=b/100 3.9981 3.9981 3.9981 3.9981 3.9981

h=b/50 3.9925 3.9925 3.9925 3.9925 3.9925

h=b/20 3.9535 3.9535 3.9535 3.9535 3.9535

h=b/10 3.8204 3.8204 3.8204 3.8204 3.8204

h=b/5 3.367 3.367 3.367 3.367 3.367

h=b/4 3.0918 3.0918 3.0918 3.0918 3.0918
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Post-Buckling Behavior of Rock Mass 

with Sheet Slope Crack

Displacement Governing Differential Equations 

of the Post-Buckling of Medium Plates 

As a general rule, the buckling analysis of slope in geot-

echnical engineering only gives the critical load in a small

stability range of ideal rock mass (classic load), but a lot of

experimental studies show that the structure usually still has

certain bearing capacity, producing corresponding defor-

mation after buckling, and the failure load is often higher

than the classical load. The elastic post-buckling behavior

of plates and shells is also known as the supercritical form

of plates and shells. The nonlinear large-deflection buckling

theory provided by Karman and Hsue-shen Tsien is adopt-

ed in the post-buckling analysis of medium plates, which is

based on geometric nonlinearity. The nonlinear partial dif-

ferential governing equations of large-deflection buckling

of rectangular medium plates without action of normal load

are [14]:

...where F (x,y) is the incoming stress function, and make:

(19)

L (w,F) is the differential operator:

(20)

Eq. (18d) is the equation of strain compatibility

obtained by the continuity condition of plane strain

between membrane force and deflection in middle plane.

The variables w, φ, ψ and stress function F(x, y) can be

worked out.

Post-Buckling of Simply Supported Rectangular

Medium Plates with Unidirectional Pressure

According to the problem-solving ideas of Section 2,

Eq. (12) is substituted into Eq. (18), and the relational

expressions of Φmn, Ψmn, and Wmn can be obtained:

(21)

...where:

(22a)

(22b)

(22c)

When m=n=1 the complete solution of stress function

can be obtained using the in-plane boundary condition of

(σxa is the average pressure on the

edges of x=0, a):

(23)

Eq. (23) is substituted into Eq. (18c), the result solved by

the Galerkin method with weight function of

can be obtained:

(24)

...where σcr is the critical stress of small-deflection buck-

ling, and the corresponding load expression can be

obtained:

(25)

...where pcr is the critical load of small-deflection buckling.
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Solving and Curves of Critical Load

The dimensionless parameter of P*=pb2/p2D is also

introduced to make the change curves of P*– W11/h by

Matlab. The same physical parameters of Section 2 are

adopted in the post-buckling analysis of simply supported

rectangular medium plates. The curves (Y-axis is pb2/p2D,

X-axis is W11/h) and corresponding data are given with con-

ditions of h= b/50, b/20, b/10, b/5, b/4.

It can be seen from Figs. 8-12 and Table 2 that the post-

buckling characteristics of plate are gradually obvious with

the growth of large-deflection, i.e., the larger the load is, the

larger the deformation of plate can be; the deformation of

plate increases with the growth of thickness under the same

load; the dimensionless critical load P* decreases with the

increase of thickness h, also showing that the buckling crit-

ical load of rectangular medium plate is less than that of

thin plate for the energy consumption of transverse shear
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Table 2. Critical loading coefficient of the post-buckling of simply supported rectangular medium plates (P*=pcrb2/π2D).

Thickness a/b=0.2 a/b=0.4 a/b=0.6 a/b=1 a/b=1.4

h=b/50 26.3949 8.3531 5.1196 3.9925 4.4639

h=b/20 23.4571 8.0664 5.0262 3.9535 4.4309

h=b/10 16.7849 7.1858 4.7189 3.8204 4.3170

h=b/5 7.8516 5.0016 3.7914 3.3670 3.9145

h=b/4 5.6116 4.0730 3.3044 3.0918 3.6587

Fig. 8. Curves of a=0.2b.

Fig. 9. Curves of a=0.4b. Fig. 11. Curves of a= b.

Fig. 10. Curves of a=0.6b.



deformation. The post-buckling characteristics of plate are

different with the change of length-width ratio, and the

dimensionless critical load of square plate (a=b) is the min-

imum. The critical load of rectangular medium plate is

identical to the results obtained by the theory of thin plate

under the conditions of h= b/50, b/20.

Verification of Hazardous Rock Mass 

in Slope

The hazardous rock mass of Zhenziyan is located at the

eastern shoulder position oblique to the middle section of

Jinfo Mountain. In the formation process of a steep cliff, the

unloading and rebound are produced in the free face of rock

mass, around which the principal stress trajectory has obvi-

ous deflection owing to the redistribution and differentia-

tion of stress. The stress concentrated zone and maximum

shear stress rising zone are produced respectively around

the free face and slope toe, causing the suppression slip rup-

ture face parallel to slope. The slope body rebounds toward

free face with the action of unloading, causing the relax-

ation of original rock mass structure, the further deepening

and increase of steep fracture, and the formation of unload-

ing fissure zone.

The formation of steep cliff unloading fissure provides

conditions for its time-dependent deformation failure. The

weathering, softening, and disintegration of the limestone

cemented with shale and argillaceous soil at the bottom of

the steep cliff are produced under the actions of weathering,

atmospheric precipitation, and groundwater to form a cavi-

ty, the further deformation of which is produced toward free

face under the action of gravity from overlying rock mass,

and the steep dip fissure zone is broken and expanded fur-

ther. Thus, the steep cliff becomes a hazardous rock mass.

After the formation of the hazardous rock, the buckling fail-

ures such as falling, dumping and slippage may appear

under the action of outer dynamic factor.

The case study for the hazardous rock mass of

Zhenziyan is progressed, and two groups of on-site test

data are adapted for comparison and validation (Tables 3

and 4).

It can be seen from the above data that the extended

length and expanded width both increase with the growth of

length-width ratio (a/b), showing that the post-buckling

characteristics of structure are more obvious. Meanwhile,

the extended length and expanded width both increase with

the diminution of thickness-width ratio (h/b). These regula-

tions are basically accorded with the buckling and post-

buckling characteristics of hazardous rock based on theory

of plates and shells, demonstrating the validity and general-

ity of the calculation results in this paper well.
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Fig. 12. Curves of a=1.4b.

Table 3. Comparison for the first group of dangerous rocks.

Elevation /m
W18 W19 Height

×width×height /m

W18 W19

1605~1805 1605~1805 200×50×3 200×60×1

Main avalanche

direction

W18 W19
Attitude of rocks

W18 W19

200° 200° 300°∠5° 300°∠5°

Movement distance

/m

W18 W19 Shape of hazardous

rock

W18 W19

600~2100 600~2100 sheet sheet

Photographs of

structure



Conclusions

The rock mass with sheet slope crack is abstracted as

sheet or medium plate, and some corresponding conclu-

sions of the analytical solution based on theory of plates

and shells can be obtained: the buckling critical load of rec-

tangular medium plate is less than that of thin plate for the

energy consumption of transverse shear deformation. When

the value of a/b is small, the change of P* with length-width

ratio is particularly evident; when a/b>4, the change of P*

tends to be gentle. The critical load of rectangular medium

plate is identical to the results obtained by theory of thin

plate under the conditions of h= b/100, b/50, b/20.

The post-buckling characteristics of plate are gradually

obvious with the growth of large-deflection, i.e., the larger

the load is, the larger the deformation of plate is; the defor-

mation of plate increases with the growth of thickness h

under the same load; the dimensionless critical load P*

decreases with the increase of thickness h, also showing

that the buckling critical load of rectangular medium plate

is less than that of the thin plate for the energy consumption

of transverse shear deformation. The post-buckling charac-

teristics of plate are different with the change of length-

width ratio, and the dimensionless critical load of square

plate (a=b) is the minimum. The critical load of rectangu-

lar medium plate is identical to the results obtained by the-

ory of thin plate under the conditions of h= b/50, b/20

demonstrating the generality of the analytical solution to

provide a basis for the stability analysis of different slope

hazardous rocks.

The shortcomings of this study include that all the solu-

tions are built in the elastic range without the analysis for

the plastic mechanical behaviors of plate, and only the load-

carrying condition of the single plate in sheet crack is ana-

lyzed, so the analytical solution has certain limitations.
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Table 4. Comparison for the second group of dangerous rocks.

Elevation /m
W25 W26 Height ×width

×height /m

W25 W26

1404~1504 1620~1670 100×30×2 100×25×3

Main avalanche

direction 

W25 W26
Attitude of rocks

W25 W26

130° 145° 300°∠5° 300°∠5°

Movement distance

/m

W25 W26 Shape of hazardous

rock

W25 W26

500 300~1900 sheet sheet

Photographs of

structure

W25 

W26
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